A multisymplectic integrator for elastodynamic frictionless impact problems

نویسندگان

  • François Demoures
  • François Gay-Balmaz
  • Mathieu Desbrun
  • Tudor S. Ratiu
  • Alejandro M. Aragón
چکیده

We present a structure preserving numerical algorithm for the collision of elastic bodies. Our integrator is derived from a discrete version of the field-theoretic (multisymplectic) variational description of nonsmooth Lagrangian continuum mechanics, combined with generalized Lagrange multipliers to handle inequality constraints. We test the resulting explicit integrator for the longitudinal impact of two elastic linear bar models, and for the collision of a nonlinear geometrically exact beam model with a rigid plane. Numerical simulations for various physical parameters are presented to illustrate the behavior and performance of our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multisymplectic Lie group variational integrator for a geometrically exact beam in R

In this paper we develop, study, and test a Lie group multisymplectic integrator for geometrically exact beams based on the covariant Lagrangian formulation. We exploit the multisymplectic character of the integrator to analyze the energy and momentum map conservations associated to the temporal and spatial discrete evolutions.

متن کامل

Multisymplectic Lie group variational integrator for a geometrically exact beam in

In this paper we develop, study, and test a Lie group multisymplectic integrator for geometrically exact beams based on the covariant Lagrangian formulation. We exploit the multisymplectic character of the integrator to analyze the energy and momentum map conservations associated to the temporal and spatial discrete evolutions. 2014 Elsevier B.V. All rights reserved.

متن کامل

Nonstandard Finite Difference Variational Integrators for Multisymplectic PDEs

We use the idea of nonstandard finite difference methods to derive the discrete variational integrators for multisymplectic PDEs. We obtain a nonstandard finite difference variational integrator for linear wave equation with a triangle discretization and two nonstandard finite difference variational integrators for the nonlinear Klein-Gordon equation with a triangle discretization and a square ...

متن کامل

High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations

In this paper, we develop a new kind of multisymplectic integrator for the coupled nonlinear Schrödinger (CNLS) equations. The CNLS equations are cast into multisymplectic formulation. Then it is split into a linear multisymplectic formulation and a nonlinear Hamiltonian system. The space of the linear subproblem is approximated by a highorder compact (HOC) method which is new in multisymplecti...

متن کامل

Conservation properties of multisymplectic integrators

Recent results on the local and global properties of multisymplectic discretizations of Hamiltonian PDEs are discussed. We consider multisymplectic (MS) schemes based on Fourier spectral approximations and show that, in addition to a MS conservation law, conservation laws related to linear symmetries of the PDE are preserved exactly. We compare spectral integrators (MS vs. non-symplectic) for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016